[PhD]: Large Language Models for Intelligent Social Networking and Event Recommendation in Declic App

Host Institution: University Paris-Est Créteil, LISSI laboratoryIndustry Partner: Declic Startup – an innovative social networking and event organization platform Supervision: Dr. Alice Othmani, HDR, Professor at University Paris-Est Créteil (UPEC)Duration: 3 yearsLocation: Paris, France with potential collaborations in the Middle East and Europe 🔍 Context and Motivation The rapid growth…

Lire la suite

[PhD] thesis position in AI at Sorbonne University: Deep Learning and Large Generative AI Models for Machine Vision

Deep neural networks are currently one of the most successful models in image processing and computer vision [1-4, 10-13]. Their principle consists in learning convolutional filters, together with attention [14,15] and fully connected layers, that maximize classification and generation performances. Large generative models (LGMs) [5] are a particular category of…

Lire la suite

[PhD] PERCEUS: Personnalisation de la Chirurgie de l’Epaule par UltraSon — IMT Atlantique & LaTIM

Un sujet de thèse est ouvert dans le cadre du projet ANR PERSAPLAN « Arthroplastie Personnalisée de l’Epaule Inversée : intégration des caractéristiques fonctionnelles et biomécaniques du patient dans le Planning chirurgical » (ANR-24-CE45-7139-01). Contexte: Le projet de thèse Perceus a pour objectif d’améliorer les résultats post-opératoires de l’arthroplastie d’épaule…

Lire la suite

[PhD] Language-aided Detection and Matching of Semantic Landmarks for Visual Localization in Complex Environments

General information Description Context Landmark detection, description and matching is the cornerstone of autonomous visual localization systems deployed in unknown environments. While most widely-adopted and accurate solutions exploit low-level landmarks such as points or lines, dealing with large-scale and/or visually ambiguous environments remains highly challenging due to the inherent multiplicity,…

Lire la suite

[PhD] Physics-Grounded Vision Foundation Models – Inria, Paris [Deadline: May 20th 2025]

Keywords : vision foundation models, physics-grounding, computer vision, scene understanding Supervisors : Raoul de Charette (Inria, Paris) and Tuan-Hung Vu (Inria / Valeo.ai, Paris) Description: The objective of the PhD is to improve the explicit understanding of physics in Vision Foundation Models (VFM). While the latter are typically trained on reconstruction…

Lire la suite