Epilepsies caused by genetic mutations: signal processing and computational modeling

Post-doc or Research Engineer position offer (ref: RHU2024-MICRO) Epilepsies caused by genetic mutations: signal processing and computational modeling Context. Developmental and epileptic encephalopathies (DEEs) are a group of severe rare diseases where the combined effect of seizures, most often drug resistant, and the non-seizures consequences of the disease etiology, often…

Lire la suite

Generative Models for Garment Mesh

Geometric deep learning has emerged in the fields of computer graphics and computer vision, enabling deep learning models to operate on geometric data such as graphs, meshes, manifolds, and point clouds. Some notable models in this area include Graph Convolutional Networks (GCNs), PointNet, Geodesic Neural Networks (GNNs), and specialized architectures…

Lire la suite

Garment-SAM: Segmenting garment images

Trained on a large-scale dataset, similar to other vision foundation models, Segment Anything Model (SAM) can generate fine-grained masks given manually defined visual prompts. Despite its remarkable success, however, it does not easily generalize to the segmentation of flexible objects like garments, since unlike the majority of objects, garments depict…

Lire la suite

Garment MeshNet: Geometric Deep Learning on 3D Garment Mesh

Geometric deep learning has emerged in the fields of computer graphics and computer vision, enabling deep learning models to operate on geometric data such as graphs, meshes, manifolds, and point clouds. Some notable models in this area include Graph Convolutional Networks (GCNs), PointNet, Geodesic Neural Networks (GNNs), and specialized architectures…

Lire la suite

Novel XAI strategies for weather forecasting

PhD position We are looking for a highly motivated PhD student to join our team project working at the intersection of Explainable Artificial Intelligence (XAI) and weather forecasting. The ideal candidate will have a strong theoretical and practical background in neural networks and experience in either numerical simulation or remote…

Lire la suite

Segmentation d’IRM multiplan par réseaux de neurones profonds (au LIS-Marseille)

Contact : marc-emmanuel.bellemare@lis-lab.fr Nous proposons un stage dont l’objectif est de proposer une nouvelle architecture de réseau profond adapté à la segmentation simultannée de plusieurs plans IRM correspondants à une séquence spécifique développée dans le cadre d’un projet de recherche avec l’APHM.   Contexte : Les troubles de la statique…

Lire la suite

Le ConTextGAN pour la génération d’images de microscopie électronique : Augmentation de données par réseau de neurones profond (LIS Marseille)

Proposition de stage de Master2 – PFE Ingénieur Encadrants : Marc-Emmanuel Bellemare et Jorge Ramos Rodriguez Contact : marc-emmanuel.bellemare@lis-lab.fr Le ConText-GAN pour la génération d’images de microscopie électronique : Augmentation de données par réseau de neurones profond. Mots-clés : IA ; Réseaux profonds ; microscopie électronique ; endocardite infectieuse.Domaines de…

Lire la suite

Machine-learning-based analysis of Pseudo Mass-Spectrum Images for Targeted Peptides Identification

Encadrants : – Zied Bouyahya (zied.bouyahya@ec-lyon.fr), Centrale Lyon, LIRIS (CNRS UMR 5205). – Léo Schneider (leo.schneider@etu.ec-lyon.fr), Centrale Lyon, LIRIS et ISA (CNRS UMR 5280). Date butoir pour candidater : 1er décembre 2024. Version en ligne du sujet : disponible sur la page https://liris.cnrs.fr/emplois/offres-de-stage Contexte Ce projet est plus particulièrement lié…

Lire la suite