Utilisation des architectures à modèle d’états telles que Mamba dans le domaine du traitement d’images médicales

Stage M2 / Ingénieur Contexte Les architectures de type State Space Model (SSM), comme Mamba [Gu 2023], ont récemment émergé, en raison de leur efficacité de calcul et de leurs excellentes performances dans la modélisation de longues séquences, en traitement du langage notamment. Mamba permet en particulier d’éviter la complexité…

Lire la suite

Arbitrary-scale Flow Matching for super-resolution on satellite maritime images

Stage M2 / Ingénieur (+thèse) We propose an internship for Master 2 and Ecole d’Ingénieur students, with a funded opportunity to pursue a PhD within the team on the same topic. For more information, please consult the offer on the link: https://www-obelix.irisa.fr/files/2024/11/Master_internship_super_resolution.pdf The expected intern will join the OBELIX research…

Lire la suite

Intégration des données d’observation de la Terre et méthodes apprentissage profond pour le suivi des systèmes alimentaires

Stage M2/Ingénieur Ce stage se déroulera sur une période de 6 mois entre janvier et juin 2025 et sera co-encadré par des chercheurs Cirad de l’UMR TETIS, Simon Madec et Roberto Interdonato. Vous trouverez l’offre de stage sur ce lien : https://nubes.teledetection.fr/s/mXoY5qYsQNnPRta Les étudiant.e.s intéressé.e.s peuvent envoyer CV, lettre de…

Lire la suite

AI-Driven Neutron Spectroscopy Data Analysis

Postdotoral position This project relies on a collaboration between two partners: CEA/DRF/IRAMIS/LLB and CEA/DES/LIAD. These labs have joined their expertise to work on a novel approach to determine the interaction parameters of a given Hamiltonian, by leveraging innovative AI methodologies to analyze neutron scattering spectroscopy data. LLB is a joined…

Lire la suite

Toward Proactive Intelligence: Environmental Contextual Information and Gesture Recognition for Characterizing Affordances in Human-System Interactions

PhD position CESI LINEACT has an open position for a PhD student to develop affordance caracterization algorithms based on contextual information. The position is located on CESI Campus Dijon. Toward Proactive Intelligence: Environmental Contextual Information and Gesture Recognition for Characterizing Affordances in Human-System Interactions Scientific fields: Artificial Intelligence, Computer Vision,…

Lire la suite

Plug-and-Play for synthetic aperture radar

Stage M2 ou équivalent The full subject, including references and figures, can be found at https://partage.imt.fr/index.php/s/MCwCbpRewPQCwsk Context The remote sensing field aims at exploiting satellite or aerial images for earth observation. This, in turns, has an increasingly important social impact, as the applications fo these methods include tackling key challenges…

Lire la suite

Performance Evaluation of Cell-Free Massive MIMO (CF-mMIMO) over Realistic Propagation Models and Development of GenAI Models for Channel Data Augmentation

Stage M2/PFE/ingénieur Description: This internship will be conducted at IETR – Rennes University, in collaboration with IEMN – Lille University. The goal is to evaluate and enhance the performance of cell-free massive MIMO (CF-mMIMO) systems using advanced signal processing and data-driven techniques. Specifically, the intern leverage signal processing schemes for…

Lire la suite