3D image reconstruction dedicated to tomographic diffractive microscopy for unlabeled samples

Subject title: 3D image reconstruction dedicated to tomographic diffractive microscopy for unlabeled samples.Host laboratory: Laboratoire Hubert Curien (LaHC), 18 Rue Pr B. Lauras, 42000 SAINT-´ETIENNE.Supervisor and contact: Fabien Momey Casella (fabien.momey@univ-st-etienne.fr).Keywords: 3D (tomographic) image reconstruction, numerical simulation, scientific programming with Matlab®,tomographic diffractive microscopy, biomedical applications.Duration: 6 months.Starting date: february/march 2025.Salary:…

Lire la suite

Extraction de caractéristiques par apprentissage profond pour le spike sorting

Stage de Master M2 au CRAN, Nancy (03-08/2024): apprentissage profond pour la classification de potentiels d’action neuronaux. Les potentiels d’action, ou spikes en anglais, constituent la base de la communication neuronale, permettant la transmission d’informations au sein des réseaux cérébraux. Ces activités électriques, générées par des neurones individuels, peuvent être…

Lire la suite

Fusion d’images spectrales de spectrométrie de masse (MSI) et de microscopie à fluorescence (IF)

Nous recherchons un(e) étudiant(e) en M2 pour un stage au sein de notre équipe de recherche de l’IPBS Toulouse, CNRS UMR 5089, spécialisée dans l’étude du microenvironnement des tumeurs mammaires. Nous travaillons principalement sur des techniques d’imagerie par spectrométrie de masse (MSI) pour l’étude des petites molécules et des lipides…

Lire la suite

Epilepsies caused by genetic mutations: signal processing and computational modeling

Post-doc or Research Engineer position offer (ref: RHU2024-MICRO) Epilepsies caused by genetic mutations: signal processing and computational modeling Context. Developmental and epileptic encephalopathies (DEEs) are a group of severe rare diseases where the combined effect of seizures, most often drug resistant, and the non-seizures consequences of the disease etiology, often…

Lire la suite

Generative Models for Garment Mesh

Geometric deep learning has emerged in the fields of computer graphics and computer vision, enabling deep learning models to operate on geometric data such as graphs, meshes, manifolds, and point clouds. Some notable models in this area include Graph Convolutional Networks (GCNs), PointNet, Geodesic Neural Networks (GNNs), and specialized architectures…

Lire la suite

Garment-SAM: Segmenting garment images

Trained on a large-scale dataset, similar to other vision foundation models, Segment Anything Model (SAM) can generate fine-grained masks given manually defined visual prompts. Despite its remarkable success, however, it does not easily generalize to the segmentation of flexible objects like garments, since unlike the majority of objects, garments depict…

Lire la suite

Garment MeshNet: Geometric Deep Learning on 3D Garment Mesh

Geometric deep learning has emerged in the fields of computer graphics and computer vision, enabling deep learning models to operate on geometric data such as graphs, meshes, manifolds, and point clouds. Some notable models in this area include Graph Convolutional Networks (GCNs), PointNet, Geodesic Neural Networks (GNNs), and specialized architectures…

Lire la suite

Novel XAI strategies for weather forecasting

PhD position We are looking for a highly motivated PhD student to join our team project working at the intersection of Explainable Artificial Intelligence (XAI) and weather forecasting. The ideal candidate will have a strong theoretical and practical background in neural networks and experience in either numerical simulation or remote…

Lire la suite