[Stage] End-to-end strategy for autonomous vehicle

Context One of the principal research themes of the IRIMAS MIAM team concerns the development of advanced control strategies for autonomous vehicles operating in shared and dynamic environments Objectives This internship is conducted within the framework of a national and international collaborative project dedicated to the development of a novel…

Lire la suite

[StageM2] à l’IGN : Reconstruction 3D des arbres à partir de données LiDAR Aérien

reconstruction 3D des arbres, LiDAR, traitement de nuages de points, apprentissage profond, génération procédurale La reconstruction 3D constitue une tâche essentielle pour l’analyse urbaine et la production de jumeaux numériques à partir de données LiDAR. Si la reconstruction des bâtiments, notamment selon différents niveaux de détail (LoD), a été largement…

Lire la suite

[StageM2] Reinforcement Learning in Jackson Networks

Location LAAS–CNRS, 7 Avenue du Colonel Roche, 31400 Toulouse, FranceKeywords Reinforcement learning, policy gradient, queueing theory, Jackson networks Context The internship is at the interface of two research domains: we will design reinforcement learning(RL) algorithms to solve challenging problems in queueing theory.Queueing theory1 is an area at the intersection of…

Lire la suite

[StageM2] Deep Learning for Early Identification of Neurodevelopmental alterations through the Analysis of Cardiac Autonomic Regulation

Advisors: Hugues Patural (Professor – PU-PH – CHU Saint-Etienne) and Olivier Alata (Professor, Hubert Curien Lab, UMR CNRS 5516) Host laboratory: Sainbiose Lab – DVH UMR 1059 INSERM / Université Jean Monnet, Saint-Étienne, France. Starting date: Spring 2026 – Application deadline : 15th of December, 2025 – Possibility of continuation…

Lire la suite

[StageM2] Deep learning for UAV-based object re-identification (ReID)

Host laboratory: Connaissance et Intelligence Artificielle Distribuées (CIAD) – http://www.ciad-lab.fr. Université de technologie de Belfort-Montbéliard (UTBM). Keywords: deep learning, object re-identification (ReID), person re-identification (ReID), UAV vision, aerial imagery, computer vision, generative models (GAN, Stable Diffusion) Contacts:  Abderrazak Chahi (abderrazak.chahi@utbm.fr), Mohamed Kas (mohamed.kas@utbm.fr), Yassine Ruichek (yassine.ruichek@utbm.fr)  Description of the internship topic:   Object Re-Identification (ReID)…

Lire la suite

[StageM] Neuroporthèses Assistés par IA et vision LABRI UMR5800

Towards a complete processing chain of 6D pose estimation for upper limb neuro-prostheses control Supervisors:Jenny Benois-Pineau (Labri, U Bordeaux), co-supervisor Renaud Péteri (MIA, U La Rochelle) Context The context of this internship is visual assistance for controlling bionic neuroprostheses. The LABRI and MIA laboratories are involved in a national project,…

Lire la suite

[StageM2] Multimodal and robust prediction of radiotherapy toxicities: fusion of foundation models for low-resource data

Keywords AI, CT-Scan, foundation models, deep learning, Data fusion, personalized medicine Context Radiotherapy is a cornerstone of cancer treatment, enabling the selective destruction of tumor cells while controlling disease progression. Despite its proven efficacy across many cancer types, it can also inadvertently damage surrounding healthy tissues, leading to adverse effects…

Lire la suite