Réunion
Frugality and compression of deep learning models
Axes scientifiques :
- Adéquation algorithme-architecture, traitements embarqués
- Audio, Vision et Perception
Organisateurs :
Nous vous rappelons que, afin de garantir l'accès de tous les inscrits aux salles de réunion, l'inscription aux réunions est gratuite mais obligatoire.
Inscriptions
14 personnes membres du GdR IASIS, et 33 personnes non membres du GdR, sont inscrits à cette réunion.
Capacité de la salle : 60 personnes. 13 Places restantes
Annonce
Description
Deep neural networks, despite their impressive abilities and increasing usage in both the private and public sectors, suffer from high resource consumption. This workshop is dedicated to frugality and, broadly speaking, compression in deep learning models. It brings together researchers, engineers, and practitioners to discuss advances that make neural networks lighter, particularly through pruning, distillation, and quantization approaches. As models grow in size and complexity, compression is becoming a major challenge for their efficient deployment, whether on large-scale servers or embedded devices. This event provides a unique platform for exchanging ideas on emerging methods, current challenges, and the perspectives that will shape the future of efficient deep learning models. The topics (not limited) of this meeting are:
– Quantification
– Pruning
– Knowledge Distillation
– Structured Compression and Matrix Factorization
– Optimization for Embedded Inference
– Industrial Applications and Feedback on Compression Methods in Real-World Use Cases
Invited speaker
– Smail NIAR, LAMIH, Université Polytechnique Hauts-de-France
– Diane Larlus, NAVER LABS Europe
Call for contribution
Do you wish to present your research or valorization work on the frugality and compression of deep learning models? Send a title and an abstract by email to the organizers, before March 10, 2026.
Organizers :
Aladine Chetouani (L2TI, Université Sorbonne Paris Nord) <aladine.chetouani@univ-paris13.fr>
Virginie Fresse (LHC, Université Jean Monnet) <virginie.fresse@univ-st-etienne.fr>
Antoine Gourru (LHC, Université Jean Monnet) <antoine.gourru@univ-st-etienne.fr>
Ayoub Karine (LIPADE, Université Paris Cité) <ayoub.karine@u-paris.fr>
Program (tentative)
9h30 – 9h45 : Welcome
9h45 – 10h00 : Introduction
10h – 11h: Keynote 1: Smail NIAR (LAMIH, Université Polytechnique Hauts-de-France)
11h – 12h: Presentations
12h – 13h30: Lunch break
13h30-14h30: Keynote 2: Diane Larlus (NAVER LABS Europe)
14h30-15h30: Presentations
15h30: 16h: Break
16h-17h: Presentations
17h-17h15: Closing
