prix de thèse Signal, Image et Vision 2025 attribué à Thomas FEL
Nous avons l’honneur et le plaisir de vous annoncer que nous avons attribué, ce jour,...
7 Mars 2024
Catégorie : Post-doctorant
HYPOCHIR: Hyperspectral for precise and optimized orthopedic surgery
The subject of this post-doctorate is led by L@bISEN and is part of the HYPOCHIR project in collaboration with LaTIM (Laboratoire de traitement de l'information médicale), a joint research unit (UMR1101) involving Inserm, Université de Bretagne Occidentale (UBO), IMT Atlantique and CHRU de Brest. The aim of this project is to develop an innovative hyperspectral imaging-assisted mapping approach for real-time orthopedic planning.
Position Profile:
Affiliated Institution: Yncréa Ouest, a private higher education institution of general interest (EESPIG), under contract with the Ministry of Higher Education and Research.
Application Context:
The aim of the HYPOCHIR project is to explore the use of hyperspectral imaging to improve the precision of orthopedic surgery. Currently, RGB imaging has limitations in terms of visualization and identification of anatomical structures and surgical instruments. To overcome these limitations, hyperspectral imaging offers the possibility of obtaining detailed information over a wide range of wavelengths, enabling the unique spectral signatures of tissues and objects to be captured.
Objective:
The main objective of this project is to develop a fast and efficient approach to hyperspectral image segmentation to automatically differentiate and identify various anatomical structures and surgical instruments. By leveraging the distinctive spectral characteristics of each element, it will be possible to accurately map the operating room, thereby facilitating preoperative planning, intraoperative navigation, and real-time assistance during orthopedic surgical procedures.
Experiments will be conducted on anatomical objects with well-defined physical characteristics to validate the effectiveness of the proposed segmentation methods. The primary goal of the HYPOCHIR project is to enhance the accuracy and safety of orthopedic surgical procedures by harnessing the advantages of hyperspectral imaging for operating room mapping. Through automatic segmentation based on spectral signatures, the project aims to optimize outcomes in the field of orthopedics. By providing improved surgical precision, HYPOCHIR will contribute to enhancing practices in orthopedic surgery and optimizing results for the patients involved.
Keywords: Hyperspectral imaging, orthopedic surgery, Image segmentation, deep learning, preoperative planning, Intraoperative navigation, Real-time assistance.
The candidate should have:
• Ph.D. in computer science, data science, machine learning, or a related field.
Benefits:
To apply:
Please submit the following documents:
via email to the following addresses:
nesma.settouti@isen-ouest.yncrea.fr
nadine.abdallah-saab@isen-ouest.yncrea.fr
References :
(1)Nadine Abdallah Saab, Marianne Al Hayek, Catherine Baskiotis, Nesma Settouti, Olga Assainova, Mohammed El Amine Bechar, Chafiaa Hamitouche, Marwa El Bouz, "Contribution of hyperspectral imaging in interventional environment: application to orthopedic surgery," Proc. SPIE 12519, Algorithms, Technologies, and Applications for Multispectral and Hyperspectral Imaging XXIX , 125190S (13 June 2023); https://doi.org/10.1117/12.2665796
(2)Seidlitz, Silvia / Sellner, Jan / Odenthal, Jan / Özdemir, Berkin / Studier-Fischer, Alexander / Knödler, Samuel / Ayala, Leonardo / Adler, Tim J. / Kenngott, Hannes G. / Tizabi, Minu / Wagner, Martin / Nickel, Felix / Müller-Stich, Beat P. / Maier-Hein, Lena. “Robust deep learning-based semantic organ segmentation in hyperspectral images”. 2022. Medical Image Analysis , Vol. 80. p. 102488. https://www.sciencedirect.com/science/article/pii/S1361841522001359
(3)Guolan Lu, Baowei Fei, "Medical hyperspectral imaging: a review," J. Biomed. Opt. 19(1) 010901 (20 January 2014) https://doi.org/10.1117/1.JBO.19.1.010901
(4)Koprowski, R., Olczyk, P. Segmentation in dermatological hyperspectral images: dedicated methods. BioMed Eng OnLine 15, 97 (2016). https://doi.org/10.1186/s12938-016-0219-5
(5)G. Zhan, Y. Uwamoto and Y. -W. Chen, "HyperUNet for Medical Hyperspectral Image Segmentation on a Choledochal Database," 2022 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 2022, pp. 1-5, doi: 10.1109/ICCE53296.2022.9730171