Réunion


Artificial Intelligence and Pattern Recognition in Remote Sensing

Date : 02 Avril 2026
Horaire : 09h00 - 17h30
Lieu : Salle du conseil, Espace Turing, LIPADE, Université Paris Cité (7e étage) 45 rue des Saint-Pères, 75006 Paris

Axes scientifiques :
  • Apprentissage machine

Organisateurs :
  • - Sylvain Lobry (LIPADE)
  • - Charlotte Pelletier (IRISA)

Nous vous rappelons que, afin de garantir l'accès de tous les inscrits aux salles de réunion, l'inscription aux réunions est gratuite mais obligatoire.

Inscriptions

26 personnes membres du GdR IASIS, et 49 personnes non membres du GdR, sont inscrits à cette réunion.

Capacité de la salle : 50 personnes. Nombre d'inscrits en présentiel : 50 ; Nombre d'inscrits en distanciel : 25
0 Places restantes

Annonce

As climate change intensifies and extreme events become more frequent, the monitoring and understanding of Earth system processes have become increasingly critical. Earth Observation (EO) and Remote Sensing (RS) support these efforts, driven by the rapid increase in the number of satellite missions. This growth in the volume and diversity of EO data has enabled large-scale environmental analyses, but has also introduced major challenges in data representation, interpretation, and timely analysis. In this context, advanced pattern recognition and data-driven techniques have become essential to extract meaningful information from these data. The objective of this meeting is therefore to review ongoing advances in EO and RS data analysis. To this end, we aim to cover the following topics during the day:

  • Deep learning for Earth observation data
  • Foundation models for Earth observation data
  • Vision and language models for Earth observation
  • 3D reconstruction
  • Semantic classification and parameter estimation from remote sensing data
  • Active, interactive and transfer learning
  • Multi-modal and multi-temporal analysis
  • Extraction, selection, learning, and reduction of features
  • Novel pattern recognition tasks in remote sensing applications
  • Explainable and interpretable machine learning
  • Hybrid models, combining physics and machine learning
  • Benchmark datasets

Invited speakers:

Call for contributions :
We are welcoming contributions on these topics. We encourage presentations in English for international researchers, but do not restrict to it. Researchers and doctoral students wishing to present their work are invited to send their proposal (title and abstract) limited to one page by email by March 2, 2026, to:

Cette journée est labellisée par le comité technique 7 de l’IAPR

Organizers :

  • Charlotte Pelletier (IRISA, Univ. Bretagne Sud)
  • Ksenia Bittner (German Aerospace Center, DLR)
  • Marc Russwurm (MEO-Lab, Univ. Bonn)
  • Sylvain Lobry (LIPADE, Univ. Paris Cité)

Programme

To be confirmed:

9h - 9h45 : Welcome coffee

9h45 - 10h00 : Introduction

10h - 11h: Keynote: Nicolas Audebert (IGN, LASTIG, STRUDEL)

11h - 12h: Presentations

12h - 13h30: Lunch break

13h30-14h30: Keynote: Flora Weissgerber (ONERA, DTIS, SAPIA)

14h30-15h30: Presentations

15h30: 16h: Coffee break

16h-17h: Presentations

17h-17h15: Closing




Les commentaires sont clos.